

Citrate Synthase Assay

Cat. No. 8318 50 tests in cuvette or 250 tests in 96-well plate

Introduction

Citrate synthase is the initial enzyme of the tricarboxylic acid (TCA) cycle. This enzyme catalyzes the reaction between acetyl coenzyme A (acetyl CoA) and oxaloacetic acid to form citric acid and CoA with a thiol group (CoA-SH). This colorimetric assay is based on the reaction between 5', 5'-Dithiobis 2-nitrobenzoic acid (DTNB) and CoA-SH to form TNB, which exhibits maximum absorbance at 412 nm. The intensity of the absorbance is proportional to the citrate synthase activity. This enzyme is an exclusive marker of the mitochondrial matrix¹.

Kit Components

Cat. No.	# of vials	Reagent	Quantity	Storage
8318a	1	Assay Buffer (5X)	12.5 mL	4°C
8318b	1	Acetyl CoA	2.5 mL	-20°C
8318c	1	DTNB (2X)	0.75 mL	-20°C
8318d	1	Triton X-100	0.5 mL	4°C
8318e	1	Oxaloacetate	0.1 g	-20°C

Product Use

This kit is used for the fast and simple measurement of citrate synthase activity² as well as the detection of intact mitochondrial inner membrane. It is for research purposes only and not for use in animals, humans, or diagnostic procedures.

Quality Control

Mitochondria citrate synthase activity was measured on rodent liver tissue and human dermal fibroblasts (ScienCellTM Cat.No.2300) derived mitochondria in serial dilution. The citrate synthase activity (OD_{412nm}) is proportional to the amount of mitochondria in reaction.

Reagents and Equipment Supplied by User

- 1. Spectrophotometer
- 2. 1mL cuvettes
- 3. 96-well plate reader
- 4. Ultrapure water (ScienCellTM Cat. No. 0600)
- 5. Mitochondria isolation kit (ScienCellTM Cat. No. 8268)

Shipping

Shipped on dry ice.

Sample and Buffer Preparation

- 1. Mitochondria isolation: isolate mitochondria from cultured cells or tissue by using mitochondria isolation kit (ScienCell™ Cat.No.8268).
- 2. Assay buffer solution (1X): dilute assay buffer (8318a) in ultra-pure water (1:4).
- 3. DTNB solution (1X): dilute DTNB (8318c) in ultra-pure water (1:1).
- 4. Oxaloacetate solution: dissolve 1.32mg (8318e) per mL 1x assay buffer, mix until homogenous. This solution can be stored at -20°C for up to one week.

Procedure for Citrate Synthase Activity Assay (1mL cuvette)

1. Set the spectrophotometer at 412 nm on a kinetic program:

Duration: 2 minutes Interval: 10 seconds

- 2. Warm the assay solutions to room temperature before starting the reaction. Mix until homogenous.
- 3. Prepare sample reactions according to the reaction scheme (see below)

Assay Buffer (1X)	875-X μL
Acetyl CoA	50 μL
DTNB solution (1X)	15 μL
Triton X-100	10 μL
Mitochondrial protein (5~10 μg)	XμL

- 4. Mix solution in cuvette.
- 5. Blank spectrophotometer with reaction mixture.
- 6. Add 50 μL oxaloacetate solution and mix (cover with parafilm and invert 3-4 times).
- 7. **Immediately** read and record decrease in OD for 2 minutes.
- 8. Calculate ΔA /min by using of the maximum linear rate. ΔA = change in OD reading.
- 9. Calculate citrate synthase activity of the sample (see calculations).

Procedure for Citrate Synthase Activity Assay (96-well plate reader)

1. Set the spectrophotometer at 412 nm on a kinetic program:

Duration: 2 minutes Interval: 10 seconds

- 2. Warm the assay solutions to room temperature before starting the reaction. Mix until homogenous.
- 3. Prepare sample reactions according to the reaction scheme (see below)

Assay Buffer (1X)	175-X μL
Acetyl CoA	10 μL
DTNB solution (1X)	3 μL
Triton X-100	2 μL
Mitochondrial protein (1~2 μg)	XμL

- 4. Mix solution in cuvette.
- 5. Blank spectrophotometer with reaction mixture.
- 6. Add 10 µL oxaloacetate solution and mix (cover with parafilm and invert 3-4 times).
- 7. **Immediately** read and record decrease in OD for 2 minutes.
- 8. Calculate ΔA /min by using of the maximum linear rate. ΔA = change in OD reading.
- 9. Calculate citrate synthase activity of the sample (see calculations).

Calculations

Calculate the citrate synthase activity using the following equation:

Unit/mg mitochondria =
$$\frac{\Delta A/min}{\epsilon \times L(cm) \times mg \text{ mitochondria}}$$

 $\Delta A/min = (change in OD reading)/time$ $\epsilon = 13.6 \text{ mM}^{-1} \text{ cm}^{-1}$ and ϵ is extinction coefficient of TNB at 412 nm L (cm) = path length for absorbance

- For 1ml cuvette, path length = 1 cm
- For 96-well plate, path length = 0.552 cm

Unit definition: One unit would make 1.0 μmole DTNB become TNB per minute at pH 7.2 at 25 °C

Example: Calculate the citrate synthase activity of isolated mitochondria from human smooth muscle cells.

2 μg mitochondria protein was used for cytochrome c oxidase activity assay in 96-well plate The following are the absorbance readings:

Time point (second)	Absorbance at 412 nm	
	0.49668	
10	0.49848	
20	0.50449	
30	0.51020	
40	0.51505	
50	0.52149	
60	0.52479	
70	0.52879	
80	0.53157	
90	0.53313	
100	0.53695	
110	0.53852	
120	0.54187	

Calculate the linear rate during different time frame:

Time Frame	Linear Rate (ΔA/min)
T_{0s} to T_{30s}	0.027
T_{30s} to T_{60s}	0.029
T_{60s} to T_{90s}	0.017
T_{90s} to T_{120s}	0.017

The linear rate for human smooth muscle cells would be

$$\Delta A/min = \frac{0.027+0.029+0.017+0.017}{4} = 0.0225$$

Human dermal fibroblasts cytochrome c oxidase activity would be

Unit/mg mitochondria =
$$\frac{0.0225}{13.6 \times 0.552 \times 0.002}$$
 = 1.498 Unit/mg mitochondria

Procedure for Measuring Mitochondrial inner Membrane Integrity

Citrate synthase locates in the matrix of the mitochondria. The integrity of the mitochondrial inner membrane is assessed by measuring citrate synthase activity in the presence and absence of the detergent, triton X-100. The ratio between activity without and with triton X-100 presence is a measurement of the integrity of the mitochondrial inner membrane.

Freeze/thaw processes may potentially cause rupture of the membrane of mitochondria. Therefore freshly prepared tissues are recommended, though frozen tissues could still be used for measuring total activity of citrate synthase.

% mitochondria with intact mitochondria inner membrane:

$$% = \frac{\Delta A/minute(w/\ detergent) - \Delta A/minute(w/\ detergent)}{\Delta A/minute(w/\ detergent)}$$

 ΔA = change in OD reading

References:

- 1. Morgunov I and Srere PA. Interaction between citrate synthase and malate dehydrogenase substrate channeling of oxaloacetate. 1998. J. Biol. Chem 273: 29540-29544
- 2. Trounce IA, Kim YL, Jun AS, Wallace DC. Assessment of mitochondrial oxidative phosphorylation in patient muscle. biopsies, lymphoblasts, and transmitochondrial cell lines. 1996. Methods Enzymol 264: 484–509