大鼠 IL-6 定量分析酶联免疫检测试剂盒 本试剂盒仅供科研使用。用于体外定量检测大鼠血清、血浆或细胞培养上清液中的 IL-6浓度。**使用前请仔细阅读说明书并检查试剂组分是否完整**,如有疑问请与合肥博美生物科技有限责任公司联系,我们将提供力所能及的帮助。 如您有其它需求,请登录合肥博美生物科技有限责任公司网站 www. bomeibio. com 或致电本公司400-688-3412。 ## IL-6简介: 白介素6 (IL-6) 是一类多功能的蛋白,在宿主防御,急性期反应,免疫反应,造血功能,神经系统等方面起到重要的作用。根据来源不同,白介素6分子量从21到28kDa不同,但均为单链蛋白。白介素6在多种细胞中都有表达,如T细胞、巨噬细胞、纤维原细胞、肝细胞、血管内皮细胞等。由于IL-6具有不同的活性,所以IL-6也被称为干扰素β2(IFN-β2)、B细胞刺激因子-2(BSF-2)、杂交瘤细胞生长因子、肝细胞刺激因子、毒性T细胞分化因子、巨噬细胞粒细胞诱导因子(MGI-2A)等。白细胞介素6在B-细胞向Ig分泌细胞的转化过程起到重要的作用,参与了淋巴细胞和单核细胞的分化,诱导神经细胞在B-细胞,T-细胞,肝细胞,造血干细胞以及中枢神经系统的分化作用。此外,肌肉运动收缩作用后白细胞介素6会被释放到血液中,进而能促进脂肪的分解并改善机体的胰岛素耐受性。 ### 检测原理: 本试剂盒采用双抗体夹心ELISA法检测样本中大鼠IL-6的浓度。大鼠IL-6捕获抗体已预包被于酶标板上,当加入标本或参考品时,其中的大鼠IL-6会与捕获抗体结合,其它游离的成分通过洗涤的过程被除去。当加入生物素化的抗大鼠IL-6抗体后,抗大鼠IL-6抗体与大鼠IL-6接合,形成夹心的免疫复合物,其它游离的成分通过洗涤的过程被除去。随后加入辣根过氧化物酶标记的亲合素。生物素与亲合素特异性结合,亲合素连接的酶就会与夹心的免疫复合物连接起来;其它游离的成分通过洗涤的过程被除去。最后加入显色剂,若样本中存在IL-6将会形成免疫复合物,辣根过氧化物酶会催化无色的显色剂氧化成蓝色物质,在加入终止液后呈黄色。通过酶标仪检测,读其450nm处的0D值,大鼠IL-6浓度与0D450值之间呈正比,通过参考品绘制标准曲线,对照未知样本中0D值,即可算出标本中IL-6浓度。 # 大鼠定量分析酶联免疫检测试剂盒组成: | 组分 | 规格 | | |------------|--|--| | 预包被板 | 2/1支(冻干)* 1m1/5m1 2/1支(冻干)* 1m10m1/5m1 m结合物 1m10m1/5m1 | | | 样本分析缓冲液 | | | | 标准品稀释液 | | | | 标准品 | | | | 生物素化抗体 | | | | HRP连接的酶结合物 | | | | 浓缩洗涤液 20× | | | | TMB底物 | | | | 终止液 | | | | 封板胶纸 | | | | 说明书 | 1份 | | ## 标本收集: - 1. 标本的收集请按下列流程进行操作; - A. 细胞上清标本离心去除悬浮物后即可; - B. 血清标本应是自然凝固后,取上清,避免在冰箱中凝固血液; - C. 血浆标本,推荐用EDTA的方法收集; D. 若待测样本不能及时检测,标本收集后请分装,冻存于-20°C,避免反复冻融。 - 2. 血清标本不应添加任何防腐剂或抗凝剂; - 3. 标本应清澈透明, 检测前样本中如有悬浮物应通过离心去除。 - 4. 请勿使用溶血, 高血脂或污染的标本检测, 否则结果将不准确。 # 注:正常小鼠血清或血浆样本请用标本缓冲液做倍比稀释后再检测。 注意事项: - 1. 试剂盒请保存在2~8℃。 - 2. 浓缩洗涤液因在低温下可能有结晶,请水浴加热使结晶完全溶解后再配制工作液。 - 3. 若标准品复溶后,请在三天内用完。 - 4、底物请勿接触氧化剂和金属。 - 5、加样时,请及时更换枪头,避免交叉污染。 - 6. 严禁混用不同批号的试剂盒组份。 - 7. 充分混匀对保证反应结果的准性很重要,在加液后请轻轻叩击边缘以保证混匀。 - 8. 室温反应,请严格控制在25~28℃。 - 9. 洗涤过程是至关重要的,洗涤不充分会使精确度下降并导致结果误差较大。 - 10. 试验中标准品和样本检测时建议作双复孔。 - 11. 加样过程中避免气泡的产生。 - 12、血清和血浆标本的检测时,检测抗体的孵育时间应适当延长。 ### 检测前准备工作: - 1. 试剂盒自冰箱中取出后应置室温平衡20分钟;每次检测后剩余试剂请及时于2~8℃保存。 - 2. 将浓缩洗涤液用双蒸水或去离子水稀释(1份加19份水)。 - 3. 标准品:加入去离子水0.5ml至冻干标准品瓶中使IL-6终浓度达到8000pg/ml,静置15分钟后轻轻混悬待彻底溶解,用标准品稀释液倍比梯度稀释后依次加入检测孔中。《标准曲线取七个点,最高浓度为8000pg/m 1,标准品稀释液直接加入作为0浓度.) ### 洗涤方法: 自动洗板机或人工洗板:每孔洗涤液为300u1,注入与吸出间隔15-30秒。洗板5次。最后一次洗板完成后将板倒扣着在厚吸水纸上用力拍干。 ## 实验过程需自备的材料: - 1. 不同规格的加样枪及相应的枪头; 2. 酶标仪; - 3. 自动洗板机; 4. 去离子水或双蒸水; # 操作步骤: - 1. 通过计算并确定一次性实验所需的板条数,取出所需板条放置在框架内,暂时用不到板条请放回铝箔袋密封,保存于4°C。 - 2. 建议设置本底较正孔,即空白孔,设置方法为该孔只加TMB显色液和中止液。每次实验均需做标准品对照 并画出标准曲线。 - 3. 分别将标本或不同浓度标准品(100u1/孔)加入相应孔中,用封板胶纸封住反应孔,室温孵育120分钟。对于血清或血浆标本,请加入50 u1样本分析缓冲液后加50 u1标本,如稀释量大,请将样本与样本分析缓冲液等量加入,不足部分用标准品稀释液补充至720u1。4. 洗板5次,且最后一次置厚吸水纸上拍干。 - 5. 加入生物素化抗体工作液(100ul/孔)。用封板胶纸封住反应孔,室温孵育60分钟。 - 6. 洗板5次,且最后一次置厚吸水纸上拍干。 - 7. 加入酶结合物工作液(100u1/孔)。用封板胶纸封住反应孔,避光室温孵育20分钟。 - 8. 洗板5次, 且最后一次置厚吸水纸上拍干。 - 9. 加入显色剂TMB100u1/孔, 避光室温孵育20分钟。 - 10. 加入终止液50u1/孔, 混匀后即刻测量0D450值。 ## 结果判断: - 1. 复孔的值在20%的差异范围内结果才有效,复孔的值平均后可作为测量值。 - 2. 每个标准品或标本的OD值应减去本底校正孔的OD值。 - 3. 手工绘制标准曲线。以标准品浓度作横坐标, 0D值作纵坐标, 以平滑线连接各标准品的坐标点。通过标本的0D值可在标准曲线上查出其浓度。 - 4. 若标本 OD 值高于标准曲线上限,应适当稀释后重测,计算浓度时应乘以稀释倍数。 #### 典型数值和参考曲线 | 71-201 | | | | |---------|---------|---------|---------| | 浓度pg/ml | 典型OD值1 | 典型OD值2 | OD平均值 | | 0 | 0. 1025 | 0. 1659 | 0. 1342 | | 250 | 0. 3457 | 0. 2647 | 0. 3052 | | 500 | 0. 4358 | 0. 4976 | 0. 4667 | | 1000 | 0.7012 | 0.6612 | 0. 6812 | | 2000 | 1. 1365 | 1. 1043 | 1. 1204 | | 4000 | 1.6106 | 1. 5592 | 1. 5849 | | 8000 | 2. 1759 | 2. 2815 | 2. 2287 | ## 大鼠IL-6参考标准曲线 # 注意:本图仅供参考,应以同次试验标准品所绘标准曲线计算标本含量。 灵敏度,特异性和重复性: - 1. 灵敏度: 多次重复结果表明,最小检出量为67pg/ml。 - 2. 特异性: 与GDNF, GM-CSF, IFN- γ , IL-1 α , IL-1 β , IL-2 , IL-4, IL-10, PDGF-BB, TNF- α , 人 IL-6, 小鼠 IL-6 没有交叉反应。 3. 重复性: 板内, 板间变异系数均<10%. #### 参考文献: - 1. Hirano, T. (1998) "Interleukin 6" in The Cytokine Handbook, 3rd. ed. Academic Press, New York, p. 197. - 2. Taga, T. and T. Kishimoto (1997) Annu. Rev. Immunol. 15:797. - 3. Chiu, C-P. et al. (1988) Proc. Natl. Acad. Sci. USA 85:7099. - 4. Peters, M. et al. (1998) Blood 92:3495. # ELISA Kit for the Quantitative Analysis of Rat IL-6 The rat IL-6 ELISA (enzyme-linked immunosorbent assay) kit is used for detection of mouse IL-6 in cell culture supernatants, human serum and plasma. THE ELISA KIT IS FOR RESEARCH USE ONLY. Please read this instruction manual carefully and check out the material provided before use, and you can contact with our company if any questions. You can enter our website or call us for other aim. #### Introduction Interleukin 6 (IL-6) is a multifunctional protein that plays important roles in host defense, acute phase reactions, immune responses, hematopoiesis and differentiation of nervous system. The IL-6 gene product is a single chain protein with a molecular mass ranging from 21 to 28 kDa, depending on the cellular source.IL-6 proteins are expressed by variety of cells, such as T cells, macrophages, fibroblasts, hepatocytes, vascular endothelial cells. Since IL-6 plays a wide variety of biological functions, it is also known as interferonβ2 (IFN-β2), B cell stimulating factor-2 (BSF-2), hybridoma growth factor, hepatocyte stimulating factor, cytotoxic T-cell differentiation factor, or macrophage & granulocyte inducer (MGI-2A). IL-6 plays an essential role in the final differentiation of B-cells into Ig-secreting cells involved in lymphocyte and monocyte differentiation. In addition, it is discharged into the bloodstream after muscle contraction and acts to increase the breakdownof fats and to improve the insulin resistance. # **Principles of the Test** rat IL-6 in the original specimen. The kits is a solid sandwich enzyme-linked immunosorbent assay for detection of rat IL-6. An anti-rat IL-6 monoclonal antibody has been absorbed onto the wells of the microtiter strips provided. Samples including specimens or standards were pipetted into wells. The rat IL-6 in specimens or standards would be captured by the coated antibody and the free others were removed by washing. The rat IL-6 biotin-conjugated antibody were added and binds to rat IL-6 captured by the first antibody, which formed a sandwich. Streptavidin-HRP would be added and binds to the biotin conjugated antibody, then free Streptavidin-HRP would be removed during a wash step. After this, subtrate solution would be added and catalyzed by the HRP, and a coloured product is formed. The intensity of the colored product is used to calculate in proportion to the amount of **Materials provided with the kits:** | reagent | 96/48Test Kit | |-----------------------------|--------------------| | Assay Buffer | 5ml/3 ml | | IL-6 Antibody-Coated Wells | 12 strips/6 strips | | Standard Diluent | 10ml/5ml | | IL-6 Standard | 2/1vial(s) | | Detetion Antibody | 10ml/5ml | | Streptavidin-HRP | 10ml/5ml | | Wash Buffer Concentrate 20× | 30ml | | ТМВ | 10ml/5 ml | | Stop Solution | 5ml/3 ml | | Plate Covers | 3/2 | | Complete Instruction Manual | 1 | # **Specimen Collection** - 1. Collecting specimen as following: - A.The particulate of the cell culture supematants should be removed before use. - B.Serum was obtained from clot at room temperature. - C.Please collect plasma with EDTA. - D.Assay immediately or store samples at -20° C. Avoid free-thaw cycles. - 2. Antiseptic and anticoagulant should not appear in Serum samples. - 3. Any particulate should be removed from samples before use. - 4. Do not use grossly hemolyzed or lipemic samples. Note: Srongly recommend that the serum and plasma samples should be diluent as doubling dilution before use. #### Precautions for use: - 2. Washing buffer concentrate may have crystal in low temperature, and you can melt its in water-bath before use. - 3. Please discard the dissolved standard after 3 days for use. - 4. Avoid contact of substrate solution with oxidizing agents and metal. - 5.Usage of disposable pipette tips avoid microbial contamination or cross-contamination of reagents or specimens. - 6. Do not mix or substitute reagents with those from other lots or other sources. - 7. To ensure the adequate mixure of added reagents, please tap gently the plate after the wells were filled with liquid. - 8. Incubation temperature should be 25~28℃. - 9. Wash step was crucial for whole assay process. - 10. Duplicate wells of the same sample were recommended in assay process. - 1. Avoid the foam while pour the liquid into wells. - 2. For serum or plasma samples ,the biotin-conjugated antibody should be incubate for at least 90 minutes. # **Reagent Preparation** - 1. The reagents should be warmed up to room temperature before use. The remanent reagents must reseal and put into refrigeratory again as soon as possible. - 2. Dilute 1ml of wash buffer Concentrate into 19ml deionized or distilled water to work. - 3. Add 0.5ml deionized or distilled water to bottle wait15 minutes for complete dissolution. And in turn add the half concentration diluent by standard diluent. **Wash step:** Automated microplate washer or operating by pipette: Each well should be pour into 300 ul wash buffer and soak 15 or 30 seconds, then be aspirated, five times process were repeated. After the last wash, remove remaining wash buffer by aspirating. Invert the plate and blot it against clean paper towels. # Materials Required But Not Provided - 1. pipettes and pipette tips - 2. Microwell strip reader capable of reading at 450 nm (540 nm as optional reference wave length) - 3. automated microplate washer - 4. Glass-distilled or deionized water #### Assay procedure - 1. The needed strips were putted into the frame, the remains were returned into foil pouch and resealed. 2. Blank well were recommended, which only color reagent and stop solution be added. It is suggested that each testing with gradient density of standard for standard curve. - 3.Add 100ul of standard or sample. Cover with the Plate Covers provided. Incubate for 2 hours at room temperature If assay the serum sample, you should add $50\,\mu$ I assay buffer with $50\,\mu$ I sample into the wells, if the protein concentration is higher than the range of the Kit, add the same quantitys assay buffer With the sample, the deficiency should be complemented with sample diluent to $100\,\mu$ I per well. - 4. Five times wash process were repeated. - 5.Add 100ul of detetion antibody. Cover with the Plate Covers provided.Incubate for 1 hour at room temperature. - 6. Five times wash process were repeated. - 7.Add 100ul of Streptavidin-HRP. Cover with the Plate Covers provided. Lucifugal incubation for 20 minutes at room temperature. - 8. Five times wash process were repeated. - 9.Add 100ul of TMB, Lucifugal incubation for 20 minutes at room temperature. - 10.Add 50ul of stop solution to each well, determine the optical density of each well within 10 minutes. ## **Calculation of Results** - 1. Duplicates should be within 20 per cent of the mean. Average absorbance values for each set of duplicate samples were used as detection results. - 2. The blank absorbance values of subtract should be deducted. - 3.Drawing a best fit curve through the points of graph. Draw the standard curve by plotting assayed OD value (on the Y axis) vs. concentration (on the X axis). The sample concentration was obtained based on its OD value founding in the standard concentration curve. - 4.If the values obtained are not within the expected range of the standard, Samples should be dilute and assay again. ## **Typical Data and Standard Curve** | concentration | Typical data 1 | Typical data 2 | Average | |---------------|----------------|----------------|---------| | (pg/ml) | | | | | 0 | 0. 1025 | 0. 1659 | 0. 1342 | | 250 | 0. 3457 | 0. 2647 | 0. 3052 | | 500 | 0. 4358 | 0. 4976 | 0. 4667 | | 1000 | 0.7012 | 0.6612 | 0. 6812 | | 2000 | 1. 1365 | 1. 1043 | 1. 1204 | | 4000 | 1.6106 | 1. 5592 | 1. 5849 | | 8000 | 2. 1759 | 2. 2815 | 2. 2287 | ### Rat IL-6 standard curve ## Sensitivity, Specificity, Repeatability **Sensitivity:** repeated assays were evaluated and the minimum detectable dose was 67pg/ml. specificity: No significant cross-reactivity or interference with GDNF,GM-CSF,IFN- y ,IL-1 a ,IL-1 β ,IL-2 ,IL-4,IL-10,PDGF-BB,TNF- α ,human IL-6, mouse IL-6 Repeatability: The coefficient of variation between wells or plates is less than 10 per cent. #### **REFERENCES:** - 1. Hirano, T. (1998) "Interleukin 6" in The Cytokine Handbook, 3rd. ed. Academic Press, New York, p. 197. - 2. Taga, T. and T. Kishimoto (1997) Annu. Rev. Immunol. 15:797. - 3. Chiu, C-P. et al. (1988) Proc. Natl. Acad. Sci. USA 85:7099. 4. Peters, M. et al. (1998) Blood 92:3495.