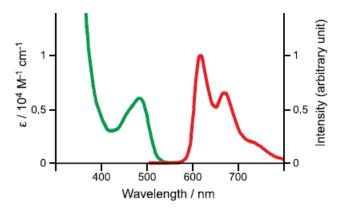
Hypoxia Probe

Cat. # LOX-1

Precautions for use

Thank you for purchasing a Hypoxia probe LOX-1. It is recommended that users read all instructions before use.


Introduction

LOX-1 is a phosphorescent light-emitting iridium complex. Phosphorescence of LOX-1 is quenched by oxygen, and is increased in response to low levels of oxygen which is detectable by a general fluorescent microscopy (red-fluorescence). LOX-1 permeates cell membrane, and it is possible to determine cellular hypoxia by red-fluorescence imaging using a general fluorescent microscopy.

Products and storage

Product	MW	Quantity	Storage
Hypoxia probe LOX-1	711.87	2 mg	room temperature protection from light

Please refer to expiration date on the label.

Phosphorescence spectra of LOX-1 (Excitation: green line, Emission: red line) 1)

Example of use

- 1. LOX-1 is dissolved in DMSO to make 1 mmol/L stock solution. (LOX-1 stock solution is stored at -20°C except for use.)
- 2. 100 µL of NanoCulture® Medium M type (NCM-M) are added to each well for

1

SCIVAX CORP.

pre-incubation of NanoCulture® Plate (NCP).

3. HT29 (colon tumor cell line) is suspended in NCM-M at a concentration of 2 x 10^5

cells/mL.

4. 100 μ L-aliquots of HT29 suspension are seeded to each well of NCP containing 100 μ L of

NCM-M, and cultured at 37°C, 5%CO₂ for 6 days to form spheroids.

5. LOX-1 stock solution is diluted with NCM-M to prepare 4 $\mu \text{mol/L}$ working solution just

before use.

6. $100 \ \mu L$ -aliquots of culture supernatant are gently removed.

7. Then, 100 μ L-aliquots of LOX-1 working solution are gently added (Final concentration of

LOX-1 is 2 μ mol/L.).

8. After culturing for a day, red-phosphorescence is measured by a general fluorescent

microscopy (Nikon ECLIPSE TS100, G-2A filter block: Ex 510-560, DM575, BA590).

Please see Handbook of NCP for more detail information

References

1. Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T. Phosphorescent

Light-Emittering Iridium Complexes Serve as a Hypoxia-Sensing Probe for Tumor Imaging

in Living Animals. Cancer Res. 2010 Jun 1;70(11):4490-8.

Product warranty

All materials supplied in product pass an inspection at SCIVAX Corporation prior to shipment.

However, if product you received is defective, please contact us.

Contact information

Technical and customer support & Manufacturer:

SCIVAX Corporation

Email: cell@scivax.com

URL: www.scivax.com/cell

Headquarters:

The east building 502, Kanagawa Science Park

3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0012 Japan

2 2011.11