

货号: MB019a-md-20

miRbay™ 支原体 PCR 检测

说明书

成都诺恩生物科技有限公司

景

简介		3
1.471		_
取样方法		3
V() /3 (A		
检测结果示例:		4
	取样方法	简介取样方法

一、简介

支原体是实验室中常见的污染细胞的原核生物。其环状双链 DNA 中富含腺嘌呤和胸腺嘧啶,支原体含有特异性的 16S 和 23S 核糖体 RNA。因支原体属于直径介于 0.2-2µm 的最小原核生物,形态易变,故极易通过滤膜而逃过培养液的过滤除菌步骤。又因其缺少细胞壁,所以对某些常用抗生素具有抗性。在细胞培养液中,支原体可达到 10⁷-10⁸CFU/mL(CFU=Colony Forming Unit,是一种支原体的浓度测量单位)而不使培养液混浊及影响细胞生长。多种支原体对细胞不产生任何病变效应,使得细胞污染不易被察觉。

细胞培养(特别是传代细胞)被支原体污染是个世界性问题。在细胞培养中支原体感染发生率达到 63%,支原体感染发生后能改变细胞的 DNA,RNA 及蛋白表达。因此每一株外来细胞在进入实验室之前都应通过支原体检测,并且每个实验室都应对其培养中的细胞进行定期支原体检测。

诺恩生物科技有限公司采用自主研发的 mycobay[™] 检测法可以通过单步 PCR 反应对支原体污染进行快速检测。实验时,把诺恩生物科技有限公司独创的特异性内参(10个分子)和处理后的样本及 PCR 反应物预混合,并加入与内参及支原体 DNA 相对应的引物,在一个反应管同时扩增内参和支原体 DNA,最后进行琼脂糖凝胶电泳分析,对比内参产物和支原体 DNA 产物的凝胶条带亮度,对样本中的支原体污染进行检测(检测结果见图 2、图 3)。相对于传统的两步 PCR 法,mycobay[™] 检测法有以下优点:

- ◎检测结果更客观──支原体 DNA 和内参在同一个 PCR 反应管中同时扩增,随后进行凝胶电泳分析,通过内参和待检测支原体的对比,确定细胞是否有支原体污染。当避免 PCR 失败造成的阴性检测结果被误认为是无支原体污染
- **◎高敏感度**——可检测到样品中 1 个细胞的支原体污染。
- **◎高特异性**——特异性的检测 7 种类型的支原体: M. hyorhinis, M. orale, M. arginini, M. fermentans, M. hominis, A. laidlawiih, M. pneumoniae。

二、取样方法

取样方法一:

- 1. 将细胞在无抗生素的培养液中传代两次。
- 2. 接近长满并且 72h 之内没有换液的细胞培养物,在无菌条件下用 0.5ml 无菌 tube 管收集上清液 100-200ul。
- 3、用封口膜密封标记好之后试管盒,常温快递至成都市高新区科园南路 88 号 B6-501。
- 注:此方法可检测到样品中极其微量的支原体,精确到到单个细胞的支原体污染,若只需做常规检测,可采用取样方法二。

取样方法二:

- 1、接近长满并且 48h 之内没有换液的细胞培养物,在无菌条件下用 0.5ml 无菌 tube 管收集上清液 100-200ul。
- 2、用封口膜密封标记后放进试管盒,常温快递至四川省成都市高新区科园南路88号 B6-501。

三、检测结果示例:

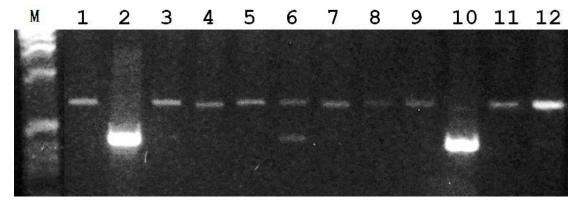


图 1:凝胶电泳图谱。其中: M 为 marker; 700 bp 处为 PCR 内参产物; 300 bp 左右为支原体 DNA 扩增产物,不同的支原体保守区片段长度不一,但产物都在 300bp 左右。泳道 1-12 在 700bp 处各有一条带,证明实验结果准确可靠。内参的加入量为 10 个分子,对比每个样本在 700bp 处的条带亮度和在 300bp 处的条带亮度,可以确定支原体 DNA 大于 10个分子,或者小于等于 10个分子,进而确定细胞有无支原体污染。例:泳道 6 在 700bp 的条带亮度和在 300bp 处的条带亮度基本相同,说明待检测样本中支原体 DNA 的分子数在 10 个左右。

	Sample Code	Cell Name	Note	Result
# 1	control	dd Water		
# 2	JD-1	细胞 1	支原体污染	++++
# 3	JD-2	细胞 2	无支原体污染	
# 4	JD-3	细胞 3	无支原体污染	
# 5	JD-4	细胞 4	无支原体污染	
			可能有轻度支原体污染,建议传代	
# 6	JD-5	细胞 5	培养后重新采样检测	+
# 7	JD-6	细胞 6	无支原体污染	
# 8	JD-7	只有培养基		
# 9	QL-1	细胞 7	无支原体污染	
# 10	QL-2	细胞8	支原体污染	++++
# 11	QL-3	细胞 9	无支原体污染	
# 12	QL-4	细胞 10	无支原体污染	

图 2: 检测结果报告汇总