

人基质金属蛋白酶-7 ELISA 试剂盒

产品编号: SEKH0255

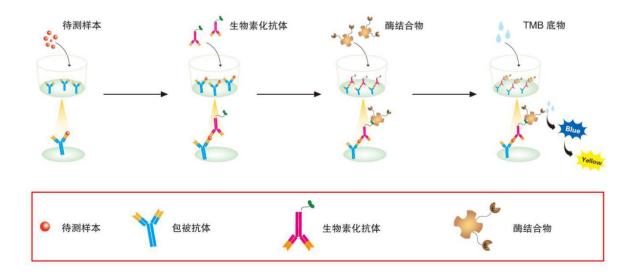
适用于人血清、血浆或细胞培养上清液等样本

仅供研究,不用于临床诊断

订购热线: 400-968-6088•技术支持邮箱: service@solarbio.com

公司官网:www.solarbio.com

背景介绍	01
检测原理	01
注意事项	02
安全提示	02
试剂盒组成及储存	03
自备实验器材	03
样品收集及储存	03
试剂准备	04
检测步骤	06
结果判断	06
参数表征	07
参考文献	09
常见问题分析及解决办法	10


背景介绍:

基质金属蛋白酶(Matrix metalloproteinases, MMP),也称为基质蛋白,是一类锌和钙依赖的内肽酶家族,在细胞外基质(Extracellular matrix, ECM)的分解中起作用。MMP-7(基质溶解素)在正常和患病组织的上皮细胞中表达。MMP-7 基因缺失的小鼠抑制了肠道肿瘤的发生,而过度表达可导致早产儿乳腺分化和男性不育。MMP-7 能够消化细胞外基质的许多蛋白质并激活其他蛋白酶。MMP-7 除了在结缔组织重塑和癌症中的作用外,还可调节先天性宿主防御中的肠 α-防御素活化,并在椎间盘突出的模型中释放 TNF-α。MMP-7 介导 Fas 配体的裂解保护肿瘤细胞免受化疗药物的细胞毒作用,加强上皮细胞凋亡。在结构上,MMP-7 是最小的 MMP 之一,由前结构域和催化结构域组成。

检测原理:

Solarbio (Solarbio ®) ELISA 试剂盒采用基于双抗体夹心法的酶联免疫吸附检测技术。将抗人 MMP-7 单克隆抗体包被在酶标板上;分别加入梯度稀释的标准品和预稀释的样本,标准品和样本中的人 MMP-7 会与酶标板上的包被抗体充分结合;洗板后加入生物素化抗人 MMP-7 抗体,该抗体会与板子上包被抗体捕获的标准品和样本中的人 MMP-7 发生特异性结合;洗板后加入辣根过氧化物酶(HRP)标记的链霉亲和素,生物素与链霉亲和素会发生高强度的非共价结合;洗板后加入显色剂底物 TMB,若反应孔中样品存在不同浓度的人 MMP-7,则 HRP 会使无色 TMB 变成不同深浅(正相关)的蓝色物质,加入终止液后反应孔会变成黄色;最后,在 \(\lambda\) max=450 nm(OD=450 nm)处测定反应孔样品吸光度(OD),样本中的人 MMP-7 浓度与 OD 成正比,通过绘制标准曲线和四参数拟合软件便可计算出样本中人 MMP-7 的浓度。

原理图:

注意事项:

- 1. 试剂盒应在有效期内使用,请不要使用过期的试剂。
- 2. 试剂盒未使用时应保存在 2-8℃冰箱,已复溶但未用完的标准品,请丢弃。
- 3. 试剂盒使用前请在室温恢复 30min,且充分混匀试剂盒里的各种成份及制备的样品。
- 4. 在试验中标准品和样本建议作复孔检测,且加入试剂的顺序应保持一致。
- 5. 为避免交叉污染,请在试验中使用1次性试管,枪头,<u>封板膜</u>(※)及洁净塑料容器。.
- 6. 浓缩生物素化抗体和浓缩酶结合物的体积较少,在运输过程中微量液体会沾到管壁及瓶盖上, 使用前请离心处理(5-10 S 即可),使管壁上的液体集中在管底部,取用时,请用移液器小心吹打几次。
- 7. 除了试剂盒中的浓缩洗涤液和终止液可以通用外,请不要使用其他来源试剂盒内含的 试剂代替本试剂盒中的某单个组分。
- 8. 为保证结果准确,每次检测均需做标准曲线。

安全提示:

试剂盒中的终止液为酸性溶液,操作人员在使用时请带上手套并注意防护;在操作过程中也要避免试剂接触皮肤和眼睛,如果不慎接触,请用大量清水清洗;检测血液样本及其它体液样本时,请按国家生物实验室安全防护有关管理规定执行。

试剂盒组成及储存:

试剂盒组成	规格(96T)	规格(48T)	保存条件
抗体预包被酶标板	8*12	8*6	2-8°C
标准品	2 支	1 支	-20 °C
SR1 标准品/样本稀释液	16ml/瓶	8 ml/瓶	2-8°C
浓缩生物素化抗体	120ul(100X)	60ul(100X)	2-8°C
SR2 生物素化抗体稀释液	16ml/瓶	8 ml/瓶	2-8°C
浓缩酶结合物(避光)	120ul(100X)	60ul(100X)	2-8°C
SR3 酶结合物稀释液	16ml/瓶	8 ml/瓶	2-8°C
浓缩洗涤液 (20×)	30ml/瓶	15 ml/瓶	2-8°C
显色底物 (避光)	12ml/瓶	6 ml/瓶	2-8°C
终止液	12ml/瓶	6 ml/瓶	2-8°C
封板胶纸	4 张	2 张	
说明书	1 份	1 份	

自备实验器材(不提供,可代购)

- 1. 酶标仪(主波长 450nm, 参考波长 540nm 或 570nm)
- 2. 高精度移液器及一次性吸头: 0.5-10,2-20,20-200,200-1000µl
- 3. 洗板机或洗瓶
- 4. 37℃解育箱
- 5. 双蒸水,去离子水,量筒等
- 6. 稀释用聚丙烯试管

样本收集及储存:

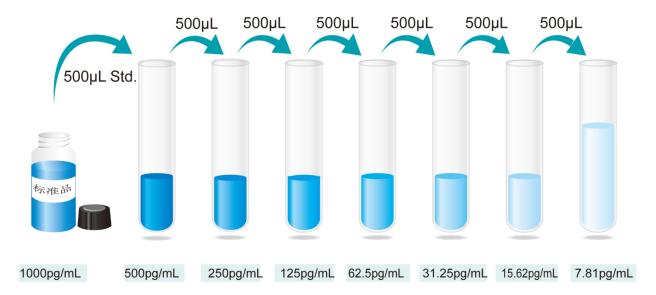
1. 细胞培养上清:

将细胞培养基移至无菌离心管,在 4℃条件下 1000 ×g 离心 10 min,然后将上清等量分装于小 EP 管并于-20℃下保存(24 小时内检测可放入 2-8℃储存),避免反复冻融。

2. 血清样本:

室温血液自然凝固 30 min 后,在 4℃条件下 1000×g 离心 15 min,然后将上清等量分装于小 EP 管并于-20℃下保存(24 小时内检测可放入 2-8℃储存),保存过程中如有沉淀,请再次离心,避免反复冻融。

3. 血浆样本:


将全血收集到含抗血凝剂的管中,根据标本的实际要求选择肝素作为抗凝剂,混合 30 min,在 4℃条件下 1000×g 离心 15 min,然后将上清等量分装于小 EP 管并于-20℃下保存(24 小时内检测可放入 2-8℃储存),避免反复冻融。

※注意: 1、由于其螯合特性,不建议将 EDTA 和柠檬酸盐血浆用于该测定。2、血清血浆样本避免使用溶血、高血脂样本,以免影响检测结果;如果样本中的靶标物检测浓度高于标准品的最高值,请将样品做适当倍数稀释后检测,建议正式实验前做预实验以确定稀释倍数。

试剂准备:

- 1. 试剂回温: 首先在实验前 30 min 将试剂盒,待测样本放置于室温下,浓缩洗涤液如出现结晶,请放入 37℃ 温浴直到结晶全部溶解。
- 2. 配制洗涤液: 预先计算好稀释后的洗涤液使用体积, 然后用双蒸水或去离子水将 20 倍浓缩洗涤液稀释 成 1 倍应用液, 未用完的浓缩洗涤液放入 4°C冰箱保存。
- 3. 标准品梯度稀释:加入标准品/样本稀释液(SR1)1000μl至冻干标准品中,静置15分钟待其完全溶解后轻轻混匀(浓度为1000pg/ml),然后按照以下浓度:500、250、125、62.5、31.25、15.62、7.81 pg/ml进行稀释,500 pg/ml为标准曲线最高点浓度,标准品/样本稀释液(SR1)作为标准曲线的零点(0pg/ml)。复溶过的标准品原液(1000pg/ml)未用完的应废弃或根据需要按照一次用量分装,并将其贮存在-20~-80°C冰箱,具体如下图。

4. 生物素化抗体工作液: 预先计算好试验所需用量,用检测稀释液(SR2)将100倍抗体浓缩液稀释成1倍应用工作液(稀释前充分混匀),请在30分钟内加入到反应孔中。

生物素化抗体工作液具体稀释方法如下:

板条	浓缩生物素化抗体(1:100): μL	检测稀释液(SR2):μL
2	20	1980
4	40	3960
6	60	5940
8	80	7920
10	100	9900
12	120	11880

5. 酶结合物工作液:按每次试验所需用量配制,用酶结合物稀释液(SR3)将100倍浓缩酶结合物稀释成1倍应用工作液(稀释前离心),请在30分钟内使用。

酶结合物工作液具体稀释方法如下:

板条	浓缩酶结合物(1:100): μL	检测稀释液(SR3): μL
2	20	1980
4	40	3960
6	60	5940
8	80	7920
10	100	9900
12	120	11880

6 洗涤方法:

- 自动洗板: 甩尽酶标板孔中液体, 在厚迭吸水纸上拍干, 注入洗涤液为 300ul/孔,注 与吸出间隔为 30 秒, 洗板 5 次。
- 手工洗板: 甩尽酶标板孔中液体,在厚迭吸水纸上拍干,用洗瓶加入洗涤液 300ul/孔,静止 30秒后甩净酶标板孔中液体,在厚迭的吸水纸上拍干,洗板 5次。

检测步骤

实验前30 min,拿出试剂盒,恢复至室温,加入标准品/样本前,请洗板3次并甩干 ↓ ↓ 加入100μl 标准品及检测样本至反应孔中, 封板后于37℃孵箱孵育90 min

6. 又位侧杆平主区应孔中, 到似后丁3/ C. 脟相脟 月90 min

 $\hat{\mathbb{I}}$

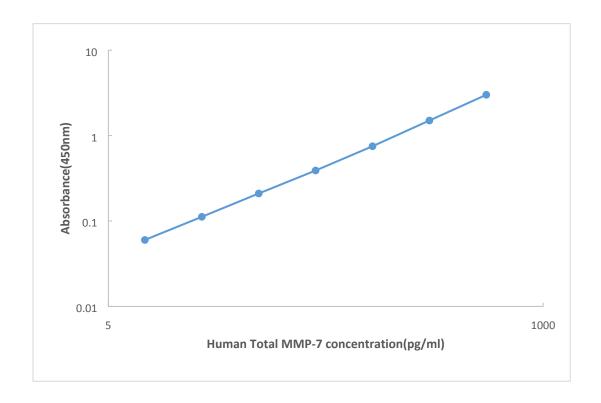
加入100μl生物素化抗体工作液至反应孔中, 封板后于37℃孵箱孵育60 min

加入100μl酶结合物工作液至反应孔中, 封板后于37℃孵箱孵育30 min

加入100μl显色底物至反应孔中, 封板后于37℃避光显色15 min

加入50_µl 终止液,即刻用酶标仪450nm波长下测量OD值(5分钟内)

结果判断:


- 1.用酶标仪 450 nm 波长测定 OD 值。选择双波长检测,参考波长为 630 nm。如不能进行双波长检测,请用 450 nm 的 OD 测定值减去 630 nm 的 OD 测定值。
- 2.计算标准品、样品的平均 OD 值:每个标准品和标本的 OD 值应减去零孔的 OD 值。
- 3.以标准品浓度为横坐标,吸光度OD值为纵坐标,用软件绘制标准曲线,样品中MMP-7含量可通过对应OD值由标准曲线换算出相应的浓度。
- 4. 若标本 OD 值高于标准曲线上限,应做适当稀释后重新检测,计算浓度时再乘以稀释倍数。

参数表征:

1. 数据及标准曲线

标准品浓度(pg/ml)	OD值1	OD值2	平均值	矫正值
0	0.008	0.010	0.009	
7.81	0.044	0.046	0.045	0. 036
15. 62	0. 083	0. 085	0.084	0. 075
31. 25	0. 157	0. 158	0. 158	0. 149
62. 5	0. 309	0.319	0.314	0. 305
125	0. 583	0. 607	0. 595	0. 586
250	1. 132	1. 173	1. 152	1. 143
500	2. 121	2. 240	2. 180	2. 171

本图仅供参考,应以当次试验标准品绘制的标准曲线计算人 MMP-7 的样本含量

2. 灵敏度:

最低可检测人 MMP-7 浓度达 4 ng/mL,

20 个零标准品浓度 OD 的平均值加上两个标准差, 计算相应的可检测浓度。

3. 特异性:

不与人 MMP-1、MMP-2、MMP-3、MMP-8、MMP-9、MMP-10、MMP-13、TIMP-1、TIMP-2、TIMP-3、TIMP-4,小鼠 MMP-9 等反应。

4. 重复性:

板内,板间变异系数<10%。

5. 回收率:

在选取的健康人血浆、细胞培养上清中加入 3 个不同浓度水平的人 MMP-7, 计算回收率。

样本类型	平均回收率(%)	范围(%)
血浆	91	84-101
细胞培养上清	103	95-112

6. 线性稀释:

分别在选取的 4 份健康人血浆和细胞培养上清中加入高浓度人 MMP-7,在标准曲线动力学范围内进行稀释,评估线性。

稀释比例	回收率(%)	血浆	细胞培养上清
1:2	平均回收率(%)	90	105
	范围(%)	83-97	94-112
1:4	平均回收率(%)	95	108
	范围(%)	88-102	101-117

参考文献:

- 1. Nagase, H. and J.F. Woessner Jr. (1999) J. Biol. Chem. 274:2191.
- 2. Parks, W.C. and R.P. Mecham (1998) in Matrix Metalloproteinases, Academic Press, San Diego.
- 3. Wilson, C.L. and L.M. Matrisian (1996) Int. J. Biochem. Cell Biol. 28:123.
- 4. Crawford, H.E. et al. (2001) Mol. Cell. Biol. 21:1370.
- 5. Lopez-Boado, Y.S. et al. (2001) J. Biol. Chem. 276:41417.
- 6. Wilson, C.L. et al. (1997) Proc. Natl. Acad. Sci. USA 94:1402.
- 7. Rudolph-Owen, L.A. et al. (1998) Mol. Biol. Cell 9:421.
- 8. Woessner, J.F. (1998) in Handbook of Proteolytic Enzymes, Barrett, A.J. et al. Eds, Academic Press, San Diego, pp. 1183-1187.
- 9. Agnihotri, R.A. et al. (2001) J. Biol. Chem. 276:28261.
- 10. Wilson, C.L. et al. (1999) Science 286:113.
- 11. Haro, H. et al. (2000) J. Clin. Invest. 105:143.
- 12. Mitsiades, N. et al. (2001) Cancer Res. 61:577.
- 13. Powell, W.C. et al. (1999) Curr. Biol. 9:1441.
- 14. Van Wart, H.E. and H. Birkedal-Hansen (1990) Proc. Natl. Acad. Sci. USA 87:5578.
- 15. Jiang, W. and J.S. Bond (1992) FEBS Lett. 312:110.
- 16. Bode, W. et al. (1993) FEBS Lett. 331:134.
- 17. Fu, X. et al. (2001) J. Biol. Chem. 276:41279.

常见问题及解决方法:

问题	可能原因	解决方法	
	洗板不充分	将洗涤液注入反应孔充分洗涤,彻底拍干孔中液体	
高背景或阴性 对照值偏高	酶结合物过量	检查酶稀释度,按说明书标识的稀释度稀释	
	底物污染	加底物前检查底物是否为透明无色,请勿用变蓝的底物,重新用新的底物试验	
	阴性对照孔被阳性对照 污染	注意洗涤时不要把洗液溢出孔外,不使阴阳对照孔液体涟接 一起	
	不同批次试剂混用	检查试剂批号,请勿用不同批次试剂	
	试剂过期	检查试剂盒有效期,请勿用过期试剂	
	孵育时间过短	按说明书中规定的时间孵育	
显色信号弱	试剂污染	检查试剂是否污染,请勿用污染的试剂	
	酶标仪滤光片不匹配	检查酶标仪设置及滤光片是否匹配	
	试剂盒平衡不充分	确保试剂盒试验前平衡至室温	
	显色时间不够	增加底物显色时间	
	检测抗体、酶、或显色 剂漏加	检查试验操作流程,重复试验	
无显色信号	酶被叠氮钠污染	请使用重新配制的试剂	
	试剂添加顺序有误	检查复核试验添加顺序、流程,重复试验	
标曲佳但样品 孔无信号	样品中靶标物含量低或 样品中无靶标物	设置阳性对照,重复实验	
	样品基质效应影响检测	重新稀释样品后复测	
标曲佳但样品 信号偏高	样品中待检物含量超过 标准曲线范围	重新稀释样品后复测	
边缘效应	孵育温度不均衡	孵育时每步均使用新的封板胶纸,避免在环境温度变化大的 地方孵育,勿叠放反应板	